
Independent Configurable Architecture for Reliable Operation of
Unmanned Systems with Distributed Onboard Services

Swee Balachandran1, César A. Muñoz2, Marı́a C. Consiglio2, Marco A. Feliú1, and Anand V. Patel1

Abstract— This paper presents the development of
ICAROUS-2 (Independent Configurable Architecture for
Reliable Operation of Unmanned Systems with Distributed
Onboard Services), the second generation of a software
architecture that integrates several algorithms as distributed
onboard services to enable robust autonomous UAS
applications. In particular, the ICAROUS architecture
defines a framework to perform detect and avoid, geofencing,
path monitoring, path planning, and autonomous decision
making to ensure safety and mission progress. Most of the
core algorithms implemented in ICAROUS are formally
verified using an interactive theorem prover. These algorithms
are composed together using a plan execution engine, whose
operational semantics is formally specified. A description of
the integrated architecture, services currently available, and
flight test results highlighting the capability of ICAROUS are
presented.

I. INTRODUCTION

The committee on Autonomy for Civil Aviation published
a report [1] on research areas required to facilitate the inte-
gration of increasingly autonomous systems in the national
airspace. The development of formally verifiable system
architectures was identified as a key research area required
for the success of these systems. Despite the emphasis
on civil aviation, the research areas identified in [1] also
apply to small UAS due to the similarity in technological
challenges they share. This paper discusses the development
of ICAROUS-2 (Independent Configurable Architecture for
Reliable Operation of Unmanned Systems with Distributed
On-Board Services), a software architecture to build safety-
centric autonomous UAS missions.

The growing applications of small UAS invariably re-
sult in software that consists of interactions (synchronous
and asynchronous) between multiple software applications,
sensors and hardware (CPUs and GPUs) components. The
increasingly complex use cases for small unmanned aerial
vehicles in close proximity to urban environments raise sev-
eral safety concerns relevant to the airframe hardware, flight
control, and decision making software. The definition of
models that specify how each software component behaves,
interacts with other components and handles exceptions
occurring in real time is crucial in establishing the safety
of the overall system. Testing each possible execution path
of these systems can be challenging and nearly impossible. A
complementary technique is the use of formally verified algo-
rithms that, under appropriate operational and environmental

1National Institute of Aerospace, Hampton, Virginia 23666.
swee.balachandran@nianet.org.

2NASA Langley Research Center, Hampton, Virginia 23681.
cesar.a.munoz@nasa.gov.

assumptions, ensure the correct behavior of the system. Thus,
testing can be focused on assuring that the operational and
environmental assumptions are realistic.

ICAROUS is a software architecture that integrates sev-
eral formally verified core algorithms commonly used in
UAS operations. The software applications within ICAROUS
are functionally distributed into conflict monitors, conflict
resolvers, decision makers, and mission-specific functions.
Each application within ICAROUS is independent and pub-
lishes relevant information to other applications using a
software bus. The decision making application processes
information from monitoring applications and triggers ap-
propriate resolutions.

Section II provides a review of relevant architectures found
in the literature. Section III describes the functional layout
of the ICAROUS architecture and the middleware currently
being used. Section IV describes the various onboard services
that ICAROUS integrates to enable autonomous UAS mis-
sions. Section V provides flight test results demonstrating the
capabilities of ICAROUS. Finally, section VI provides a dis-
cussion on the ICAROUS architecture with potential future
work directions. Finally section VII provides conclusions.

II. RELATED WORK

Several government, industry, and research organizations
have recognized the importance of having an architecture
standard to promote the development, reuse, and interoper-
ability of software/hardware components across a wide range
of unmanned systems operating and collaborating over land,
air and water. The US Department of Defense (DoD) calls for
the adoption of a modular Open Systems Architecture (OSA)
and consequently several organizations have developed var-
ious architectures consistent with the OSA concept. A few
examples are the Unmanned Systems Command and Control
Standard Initiative (UCI), Open Mission Systems (OMS),
and the Future Airborne Capability Environment (FACE).
A detailed discussion and comparison between these various
OSA efforts is described in [2]. Reference [3] provides a
comprehensive survey of various architectural developments
spearheaded by DoD, the US Navy, and the US Air Force.

Pastor et al. [4] proposed the use of a Service Oriented
Architecture (SOA) with a UAV service abstraction layer
that enables high-level services to provide flight control
inputs. The various services were categorized into one of
the following categories: mission, payload, flight, awareness.
How et al. [5] developed and implemented the MIT CSAT
(Cooperative Search, Acquisition and Track) Architecture.
Bamberger et al. [6] developed the John Hopkins APL

https://ntrs.nasa.gov/search.jsp?R=20190033162 2020-05-08T20:16:32+00:00Z



Autonomous UAV Architecture with a focus of controlling
a swarm of UAVs. Curtis Heisey et al. [7] developed the
MIT/LL Reference Architecture for small UAS.

The Air Force Research Laboratory developed the
OpenUxAS system [8]. OpenUxAS is a collection of mod-
ular services to perform surveillance missions with one or
more UASs. A process algebra framework enables the spec-
ification of tasks. These tasks are then distributed optimally
among multiple UAS which then collaborate to efficiently
complete the task.

III. ICAROUS ARCHITECTURE

A. Functional architecture

The ICAROUS architecture is similar in spirit to the
SOA architecture proposed by Pastor et al. [4]. A set of
services provide various capabilities such as path planning,
sense and avoid, geofence containment, task planning, etc.
These services are commonly used to construct complex
autonomous UAS applications. Unlike the architectures dis-
cussed in the preceding section, the ICAROUS architecture
also specifies a framework for performing conflict monitoring
and resolutions. Furthermore, a decision making application
coordinates the output of conflict monitors and resolvers to
ensure safe operation.

Shown in Figure 1 is a description of the functional layout
of the ICAROUS architecture. Applications are logically
organized into conflict monitors, conflict resolvers, mission
managers, and decision makers.

Conflict monitors are algorithms that monitor for imminent
violation of airspace constraints such as geofences, conflicts
due to other vehicles in the airspace, deviations from mission
flight plan, etc. These conflict monitoring applications can
also provide tactical resolutions. A tactical resolution is a
simple maneuver that, if executed, is guaranteed to prevent
the corresponding conflict violation. However, a tactical reso-
lution does not predict future conflict violations and may not
resolve other types of conflicts if they exist simultaneously.
The notion of a conflict is abstractly represented by a set
of descriptors that convey meta level information about a
conflict such as its severity, time to conflict violation, and
point of no return. These descriptors enable a decision
making tool to sort them in an appropriate order to suite the
mission needs and consequently invoke the corresponding
resolvers.

Conflict resolvers compute resolutions to prevent immi-
nent violation of specified constraints. There can be several
resolvers, one for each conflict detector. Resolvers may also
handle multiple conflicts simultaneously. Resolvers provide
strategic resolutions that are computed to prevent one or
more constraint violations. A resolution is also abstractly
represented by descriptors that provide meta level informa-
tion about the resolution such as resolution type, time to
recovery, etc.

A decision making application receives conflict infor-
mation from monitors and triggers resolvers to compute
resolutions for one or more conflicts. When resolving immi-
nent constraint violation, outputs from mission applications

Fig. 1. Functional architecture

Fig. 2. ICAROUS from a Service Oriented Architecture perspective (Figure
is notional)

are ignored. The mission is resumed once all conflicts are
resolved.

B. Middleware architecture

The presence of various hardware devices for embedded
systems, associated variability in hardware architectures,
and operating systems requires the use of a middleware
to abstract away from the underlying operating system and
hardware architecture. Furthermore, the complexity of UAS
missions which require interactions between various software
applications require the existence of a robust communication
framework. ICAROUS is currently being developed using the
NASA core Flight Systems (cFS) middleware.

The core Flight System (cFS) is a platform independent
reusable software framework and a set of reusable software
applications. There are three key aspects to the cFS archi-
tecture: a dynamic run-time environment, layered software,
and a component-based design. These key aspects make
cFS suitable for reuse on any number embedded software
systems. The cFS flight software framework takes advantage
of a rich heritage of successful Goddard Space Flight Center
flight software efforts and addresses the challenges of rapidly
increasing software development costs and schedules due
to the constant changes and advancements in hardware.
Flight software size and complexity is expected to grow
dramatically in coming years and the cFS provides a means



to manage the growth and partition complexity. To support
reuse and project independence, the architecture contains a
configurable set of requirements and code. The configurable
parameters allow the cFS to be tailored for each environment
including desktop and closed loop simulation environments.
The ability to run and test software applications on a
developer’s desktop and then deploy that same software
without changes to the embedded system is possible using
the cFS. Science and mission software can be developed and
functionally tested very early in the project and well before
any project hardware is even available. The cFS provides
a tool suite which includes a reusable test suite. In addi-
tion, cFS also contains reusable artifacts including require-
ments, design documentation, test procedures, development
standards, and user guides. The cFS middleware simplifies
the flight software development process by providing the
underlying infrastructure and hosting a runtime environment
for development of project/mission specific applications. The
cFS architecture also simplifies the flight software mainte-
nance process by providing the ability to change software
components during development or in flight without having
to restart or reboot the system.

IV. CORE SERVICE DESCRIPTION

Each core functionality within ICAROUS can be viewed
as a service and is implemented as a cFS application.
Each cFS application makes use of the core flight execu-
tive features. For example, the applications can exchange
information between each other using a publish/subscribe
capability provided by the cFS Software Bus. The core
ICAROUS services are described in the following sections.

A. Geospatial conformance

A geofence application provides functionalities to monitor
imminent conflicts related to keep-in and keep-out geofences.
Underlying the geofence application is a library of formally

Fig. 3. Ray casting

Fig. 4. Detecting and avoiding well clear violations

verified core algorithms called PolyCARP [9], [10]. Poly-
CARP is used to check if a given point is within or outside
a polygon. Using a raycasting algorithm as shown in Figure
3, a given point is determined if it is located within/outside
a polygon. Information regarding imminent violation with
respect to available fences, time to violation and a safe
recovery position are published by the geofence monitoring
application.

B. Detect and avoid

A traffic application provides basic avoidance capabilities
to check for imminent well clear violation against other
vehicles in the airspace. Underlying this application is a
suite of formally verified core algorithms referred to as
DAIDALUS [11]. DAIDALUS also provides various reso-
lutions (track, ground speed, altitude and vertical speed) that
if executed by the vehicle ensures separation among vehicles
in the airspace.

C. Path planning

A trajectory application provides path planning capa-
bilities. Various path planning tools based on search and
numerical optimization techniques such as A∗, RRT, and
B-splines are available [12]. Each trajectory planner has
varying capabilities. These planners can take into account
static obstacles such as geofences and dynamic obstacles
such as traffic. Figure 5 compares the outputs of various
planners currently available. The trajectory application also
monitors for flight plan deviations from the original mission
flight plan.

D. Decision making

Decision making in ICAROUS is currently governed by
finite state machines implemented using the NASA Plan
Execution Interchange Language (PLEXIL) [13]. The op-
erational semantics of PLEXIL has been formally specified
and serves as reference implementation of PLEXIL’s exec-
utive [14]. Decision making is decomposed based on the



Fig. 5. Comparison of planner outputs for simple geofence re-route scenario
(red: Grid A*,black: Trim A*, magenta: RRT, cyan: B-splines)

various flight phases, i.e., takeoff, climb, cruise, approach,
and landing. This leads to a hierarchical set of finite state
machines used for decision making. These finite state ma-
chines are driven by the outputs of various conflict monitors.
Consequently, the finite state machines trigger the planning
application to compute alternate paths/reroutes to prevent
constraint violations.

E. Mission-Specific functions

In addition to the above core services available, The
ICAROUS software suite provides application for mission-
specific behaviors such as target tracking, inspecting objects,
etc. The decision making application overrides the mission
specific behavior if conflict violations are detected. Mission
functionality is resumed once all conflicts are resolved.

V. FLIGHT TEST RESULTS

The ICAROUS-2 architecture is currently being developed
under the auspices of the NASA Unmanned Air Traffic
Management (UTM) project. A set of milestones called
Technology Capability Levels (TCL) has been established
to demonstrate the technologies under development. Several
flight tests illustrating the capabilities of ICAROUS have
been conducted. Detailed descriptions of these tests can
be found in [15]. Significant tests showcasing ICAROUS
geofencing and traffic avoidance capabilities are briefly high-
lighted in this paper.

A. Illustration of geofencing capabilities

Figure 6 illustrates a beyond visual line of sight mission
flying through an urban environment and across multiple
intersections in the NASA Langley Reesearch Center. The in-
tersections were treated as no fly zones. The flight waypoints
were intentionally chosen to fly through the no fly zones.
The intersections were represented as keep-out geofences
(shown as red boxes in Figure 6). The goal of this test

Fig. 6. Flight path for a beyond visual line of sight mission. Takeoff
position (top left) and landing position (bottom right). No fly zones around
intersections.

was to let ICAROUS recognize the presence of a keep-
out geofence conflict and take necessary actions to prevent
constraint violation. Figure 6 illustrates the final flight path
of the vehicle. At both intersections, ICAROUS detects the
conflict and reroutes the vehicles around the intersection. The
green segments in Figure 6 indicate the portions of the flight
when ICAROUS was active.

B. Illustration of traffic avoidance capabilities

ICAROUS traffic avoiding capability was demonstrated
against stationary and moving intruders. A cylindrical well
clear volume of radius 12 m and height 100 m was chosen.
For safety reasons, intruder vehicles were flown with an
altitude separation. Vehicles communicated their position
to each other using Dedicated Short Range Communica-
tion (DSRC) radios. Figure 7 illustrates a scenario where
ICAROUS encounters an intruder that remained stationary
on the ground. Figure 7 also illustrates the track resolutions
executed by ICAROUS at two different points during the
encounter. The horizontal distance to the intruder as a func-
tion of time is illustrated in figure 8. Figure 9 illustrates the
conflicting track angles that could result in loss of separation
with the intruder vehicle. ICAROUS maneuvers the vehicle
to stay clear of these track angles.

VI. DISCUSSION

The architecture discussion in the preceding sections de-
pends on monitoring services to detect conflicts. Conse-
quently, this requires appropriate conflict detectors to monitor
specified constraints. Currently, the ICAROUS architecture
supports detecting conflicts due to geofence (keep-in/keep-
out) constraints, well-clear violations due to other intruders
in the airspace, and flight plan deviation. To address any
other conflicts, appropriate monitors must be incorporated.
For example, unsafe conditions due to off-nominal bat-
tery voltages can be flagged by a better health monitoring
service. The abstract representation of conflicts defined in
the ICAROUS architecture enables expanding the suite of



Fig. 7. Encounter with a stationary intruder

Fig. 8. Horizontal distance between ownship and stationary intruder

Fig. 9. Track angles that could result in loss of separation

monitoring applications. Adding new monitors also requires
having appropriate conflict resolvers to handle new conflicts.

VII. CONCLUSION

This paper presented the ICAROUS-2 architecture.
ICAROUS-2 follows the service oriented architecture
paradigm and provides a logical organization of applica-
tions into conflict monitors, resolvers, mission managers,
and decision making tools to build safe UAS missions.
The current implementation of ICAROUS-2 provides several
monitoring and resolving services for geofence conformance
and traffic avoidance. Several of the core algorithms used
by the conflict detectors and resolvers are formally verified
using interactive theorem provers. Future work will look into
expanding the core functionality of ICAROUS with more
features, conflict monitors (e.g., battery health monitor) and
safe flight-termination services.

REFERENCES

[1] N. R. Council et al., Autonomy research for civil aviation: toward a
new era of flight. National Academies Press, 2014.

[2] J. L. Tokar, “A comparison of avionics open system architectures,”
ACM SIGAda Ada Letters, vol. 36, no. 2, pp. 22–26, 2017.

[3] D. Gonzales and S. Harting, “Designing unmanned systems with
greater autonomy: using a federated, partially open systems architec-
ture approach,” RAND NATIONAL DEFENSE RESEARCH INST
SANTA MONICA CA, Tech. Rep., 2014.

[4] E. Pastor, C. Barrado, E. Santamaria, J. Lopez, and P. Royo, An open
architecture for the integration of UAV civil applications. Citeseer,
2009.

[5] J. P. How, C. Fraser, K. C. Kulling, and L. F. Bertuccelli, “Increasing
autonomy of uavs,” IEEE Robotics & Automation Magazine, vol. 16,
no. 2, 2009.

[6] R. J. Bamberger Jr, D. P. Watson, D. H. Scheidt, and K. L. Moore,
“Flight demonstrations of unmanned aerial vehicle swarming con-
cepts,” Johns Hopkins APL technical digest, vol. 27, no. 1, pp. 41–55,
2006.

[7] C. W. Heisey, A. G. Hendrickson, B. J. Chludzinski, R. E. Cole,
M. Ford, L. Herbek, M. Ljungberg, Z. Magdum, D. Marquis,
A. Mezhirov et al., “A reference software architecture to support
unmanned aircraft integration in the national airspace system,” Journal
of Intelligent & Robotic Systems, vol. 69, no. 1-4, pp. 41–55, 2013.

[8] L. H. Steven Rasmussen, Derek Kingston, “A brief introduction to
unmanned systems autonomy services (uxas),” in 2010 International
Conference on Unmanned Aircraft Systems (ICUAS), June 2018.

[9] A. Narkawicz and G. Hagen, “Algorithms for collision detection
between a point and a moving polygon, with applications to
aircraft weather avoidance,” in 16th AIAA Aviation Technology,
Integration, and Operations Conference, AIAA AVIATION Forum,
no. AIAA-2016-3598, Washington, DC, USA, June 2016. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2016-3598

[10] A. Narkawicz, C. Muñoz, and A. Dutle, “The MINERVA
software development process,” in Automated Formal Methods, ser.
Kalpa Publications in Computing, N. Shankar and B. Dutertre,
Eds., vol. 5. EasyChair, 2018, pp. 93–108. [Online]. Available:
https://easychair.org/publications/paper/g1Rs

[11] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, and
M. Consiglio, “DAIDALUS: Detect and Avoid Alerting Logic for
Unmanned Systems,” in Proceedings of the 34th Digital Avionics
Systems Conference (DASC 2015), Prague, Czech Republic, September
2015.

[12] S. Balachandran, A. Narkawicz, C. Muñoz, and M. Consiglio, “A path
planning algorithm to enable well-clear low altitude UAS operation
beyond visual line of sight,” in Proceedings of the 12th USA/Europe
Air Traffic Management R&D Seminar, ATM 2017, no. 16, Seattle,
Washington, 2017.

[13] V. Verma, T. Estlin, A. Jónsson, C. Pasareanu, R. Simmons, and
K. Tso, “Plan execution interchange language (plexil) for executable
plans and command sequences,” in International symposium on arti-
ficial intelligence, robotics and automation in space (iSAIRAS), 2005.



[14] G. Dowek, C. Muñoz, and C. Rocha, “Rewriting logic semantics of
a plan execution language,” Electronic Proceedings in Theoretical
Computer Science, vol. 18, pp. 77–91, 2010.

[15] A. Moore, S. Balachandran, S. D. Young, E. T. Dill, M. J. Logan,
L. J. Glaab, C. Munoz, and M. Consiglio, “Testing enabling tech-
nologies for safe uas urban operations,” in 2018 Aviation Technology,
Integration, and Operations Conference, 2018, p. 3200.


